Thursday, August 24, 2017

Sensor Technology News: InventionShare Client Circuit Seed Announces Breakthroughs With Analog to Digital ...

ElectronicKitSchool. - This is one information update from sensor technology news 2017 in this time with the article titled InventionShare Client Circuit Seed Announces Breakthroughs With Analog to Digital Circuit Conversions Enabling Analog Designers Greater Flexibility to Meet Specific Requirements for Future IoT, Sensor and Semiconductor Applications and published in Wireupdate site.

Image Courtesy of Wireupdate

Mr. Greg Waite, CEO of InventionShare, announced today at the company's Ottawa office that Circuit Seed™ has had significant breakthroughs for converting analog to digital circuits and can now offer designers greater flexibility to meet specific future requirements for semiconductor, sensor and IoT product applications.

Circuit Seed is a family of inventions that work together to process analog signals using 100% digital parts. These digital circuits and components are configured and modified to provide the same functionality as transistors, capacitors and inductors with better performance and without the analog limitations. They include digital designs which provide precision without precision parts, eliminating the requirement for current mirrors and matched pairs. Circuit Seed can also impact traditional analog or mixed integrated circuits which are complex to design and manufacture.

Mr. Waite said, "Circuit Seed is a significant breakthrough allowing analog designers to now go beyond Moore's Law, offering flexible designs, smaller sizes than ever before, lower power, better performance and precisions — in many cases by one or two orders of magnitude, and in some cases even more. We can now offer manufacturers unique opportunities to develop the thousands of applications that are or will be required for the future Internet of Things (IoT). Across so many electronic devices you can pack in functionality in a much smaller footprint. The software industry will eat this up with API access to functionally rich chip sets tied to SaaS and cloud subscription plans — what a boon for AI."

For Circuit Seed, the geometry is an important part of the design. Circuits are usually implemented as a mix of analog and digital circuits with components for both. Analog components are typically 20 percent of the overall circuit. However, the analog design takes up 80 percent of the design time and two to three times longer to debug. Both analog and digital circuits have design rules and performance characteristics that apply to each. All the same issues that apply to digital circuits apply to analog circuits.

Analog circuits often require matched pairs of devices with identical electrical properties — but there is always some process variation between the devices which causes errors. The mixed signal (analog and digital) integrated circuits cannot perform on smaller than 40nm process nodes, and they can't operate at low power without severe limitations. In contrast, Circuit Seed designs process analog signals using 100 percent digital components which means they are subject only to the limitations of digital design rules and not analog design rules.

Further, the principles of the Circuit Seed design and the configuration of the circuits overcome many of the deficiencies of analog circuits. Mixed signal circuits require a transistor, capacitor, or an inductor to travel off the integrated circuit to the analog component and then back to the digital process. Circuit Seed circuits, once converted from analog to digital, remain on the integrated circuit eliminating many of the analog circuit issues. This means that several products can be impacted using specific CiFET™ (complementary current injection field effect transistors) developed by Circuit Seed.

The CiFET is a novel CMOS building block with a unique charge-based characteristic, a modification of the traditional MOSFET. It can be built into multiple stages creating high gain voltage amplifiers called CiAmps; single-ended, differential single-stage, 2-stage, 3-stage, and 3-stage feed-forward can be constructed. The full-differential CiFET OpAmp is anticipated to be a baseline configuration. None of the CiAmp arrangements use traditional power hungry analog current mirrors or state-of-the-art bulky analog components for gain but, instead, have a low output impedance which drives resistive and capacitive loads, is small, low power, and scalable into nanotechnology IC process nodes.

A variety of applications can be developed using such Circuit Seed designs as: Single-ended Operational Amplifiers (OpAmps), Differential Low Noise Amplifiers (LNA), Proportional to Temperature Reference (PTAT), Phase-Locked-Loop (PLL), Ring Oscillator with Ultra-High Spectral Purity, Multi-GHz Ring Voltage Controlled Oscillator (VCO), Frequency Mixers, Combined Analog and Digital System-on-Chip (SoC), Memory and Processors, Voltage/Temperature Referencing, Analog-to-Digital Conversion (ADC), Digital-to-Analog Conversion (DAC), and Sensing and Modulation/Demodulation. 

And now you read more about InventionShare Client Circuit Seed Announces Breakthroughs With Analog to Digital Circuit Conversions Enabling Analog Designers Greater Flexibility to Meet Specific Requirements for Future IoT, Sensor and Semiconductor Applications from original source using link HERE


Post a Comment